
61 

17. GUSEINOV XH.G., SUBBOTIN A.I. and USHAKOV V.N., Derivatives of multivalued mappings and 
their application in control problems of game theory, Probl. Upravl. i Teorii Inform., 
14, 3, 1985. 

18. NIKOL'SKII M.S., On approximation of the reachability set for a differential inclusion, 
Vestnik MGU, ser. Vychisl. Matem. i Kiber., 4, 1987. 

19. TARAS'YEV A.M., USHAKOV V.N. and KHRIPUNOV A.P., A computer algorithm to solve control 
problems of game theory, PMM, 51, 2, 1987. 

20. GUSEINOV KH.G. and USHAKOV V.N., Strongly and weakly invariant sets relative to a dif- 
ferential inclusion, Dokl. Akad. Nauk SSSR, 303, 4, 1988. 

21. BLAGODATSKIKH V.I. and FILIPPOV A.F., Differential inclusions and optimal control, Trudy 
Matem., Inst. Akad Nauk SSSR, im. V.A. Steklova, 169, 1985. 

Translated by Z.L. 

J. AppZ. Maths Mechs, Vol. 55, No.1, pp. 61-67, 1991 OOZl-8928/91 $15.00+0.00 
Printed in Great Britain 01992 Pergamon Press plc 

THE NON-LINEAR ACTION OF TANGENTIAL STRESSES ON THE WAVE MOTION 
OF A LOW-VISCOSITY FLUID* 

V.A. BATYSHCH~ 

Formal asymptotic expansions of the solution of a non-linear problem on 
the wave motion of a fluid with specified tangential surface stresses 
are constructed at high Reynolds numbers. A non-linear boundary layer 
(BL), for which a selfsimilar solution is constructed, is formed Close 
to the free boundary. The flow outside of the BL satisfies Euler's 
equation. The free boundary is determined by a dynamic condition which 
takes account of the tangential stresses and the velocity field in the 
BL. The action of the tangential stresses on solitary waves and on low 
amplitude progressive waves is calculated numerically. 

Non-linear BL's close to free boundaries when there is 
thermocapillary flow have been studied in /l-4/. The action of 
tangential stresses on the wave notions of a fluid in the case of a 
disappearing viscosity has been treated in a linear formulation in /5, 
6/. Asymptotic expansions of the solution of a stationary non-linear 
problem with a free boundary have been constructed in /7, 8/. 

1. A non-linear Problem is considered concerning the wave motion of a fluid under the 
action of a system of "travelling" tangential stresses T(x - ct), specified on a free boundary 
r, for a system of Navier-Stokes equations with a disappearing viscosity v-.+0 

&,%?t-+ (v,V)v = -p"Vp f YAV + F. divv = 0 

p = 2vpnIIn f ok + p*, 2vplIn - 2vp (nnn) n = T (r - ct), 

aqat + VVG = 0, (+, 2) E r 

(1.1) 

Here v = (u,, ur), g = -_ge,, e, is a unit vector along the vertical s-axis, g is the 
gravitational acceleration constant, p is the density, k is the curvature of the free 
boundary r (it is assumed that k>O, if the boundary ris convex], a is the surface 
tension, n is the unit vector of the external normal to the free boundary, II is the rate of 
deformation tensor, p* = const and T are the specified pressure and tangential stress on the 
free boundary, c is the rate of displacement of the tangential load and G (I, 2, t) = 0 is 
4~PrikZ.Matem.Hekhan.,55.1,79-85,i~9i 
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the equation of the free boundary in implicit form. It is assumed that the fluid occupies 
a horizontal layer D bounded from above by the free boundary I? and from by a wall S on which 
the sticking condition is satisfied. The velocity field at infinity is specified. The 
function T(s - et) is assumed to be integrable on the surface F. Initial conditions are 
not specified since the solution of the problem is constructed in the form of travelling 
waves of the form v(z-et). 

A boundary-layer is formed close to the free boundary and the solid wall. In the 
unbounded domain everywhere outside of the boundary-layer, the flow is approximately 
described by Euler's equations. Formal asymptotic expansions of the solution as v-+0 of 
problem (1.1) areconstructed below in the case when the characteristic value of the velocity 
U in the EL close to the free boundary is comparable as regards its order of magnitude (U-c) 
or far greater than the rate of propagation of the tangential stresses. In this case a non- 
linear boundary-layer arises close to the free boundary. If, however, lJ < c, the boundary 
layer equations are linearized and solved in quadratures /a/. 

Problem (1.1) is reduced to a dimensionless form and a small parameter e i= (pV%*T*-')'IS 
is introduced where L and T, are the characteristic scales of length and of the tangential 
stress. We note that small values of the coefficient of viscosity correspond to small E. 
The characteristic value of the velocity in the boundary-layer close to the free boundary 
tr =: (LT*%J-lo-*)'/* is adopted as the velocity scale. A dimensionless pressure is introduced 
by the relationship p = T,p' - pgz. Asymptotic expansions of the solution of problem (1.1) 
when E--t0 are constructed in the form 

v - h, + E”. (vl + h, + ~1) + . . (1.2) 

Here, z = c(x- ct) is the equation of the free boundary. 
We denote by Dp and Ds the domains of the boundary layers close to the free boundary 

and the solid wall respectively. Then, h, and qn are functions of the type of solutions 
of the boundary-layer problem in Drand w, and r1 are functions of the type of the solutions 
of the boundary-layer problem in the domain D,+ These functions and their derivatives dis- 
appear outside of the boundary layers. The functions vlr p. and p1 determine the solution 
of the problem outside of the domains Dr and Ds. 

We note that the characteristic velocity scale U, the orders of the principal terms in 
the expansions (1.1) and the orders of the thicknesses of the boundary layers are found from 
the condition for the orders of the viscous and inertial terms in the system of Navier-Stokes 
equations and in the boundary conditions for the tangential stresses.to be the same. In 
this case the thickness of the boundary-layer close to the free boundary is of the order of 
e. 

Remark. Asymptotic expansions of the solution of problem (1.1) have been constructed 
in a linear formation in /5/. Bath in the non-linear problem and in the linearized problem 
15, 6/, in the case of finite tangential stresses the velocity of the fluid in the boundary- 
layer close to the free boundary is greater by an order of magnitude than the velocity of 
the external flow (expansions (1.2)). Taking the non-linearity into account changes the 
thickness of the boundary layer by 6,: in the linear problem 6, UY"' and in the non-linear 
problem 6, - ~‘1.. 

2. The boundary-value problem for the principal terms of the asymptotic forms (1.2) 
which determine the flow in the boundary-layer close to the free boundary is obtained by the 
application of a second iterative process to system (1.1) using the Vishik-Lyusternik method 
/g/. 

We now introduce a new coordinate system zrl = z - ct, a1 = z, which moves along the x- 
axis at a velocity c together with the system of tangential stresses. Close to the free 
surface in the moving coordinates, we also introduce the local orthogonal coordinates E* 9 
/a/, where E, is the distance of the point N (31. 21) from the surface F and 'p is the 
curvilinear coordinate, on the surface r, of the base of the normal dropping down from the 
point N. It is assumed that, for sufficiently small f , segments of the normals to the 
surface F do not intersect. 

Let h,,, and h$, be the components of the vector h, in the local coordinates. Now let 

us determine the velocity field which is independent of t in the travelling coordinate system 

A* (% 5). We substitute (1.2) into (1.1) and expand vl, p0 and pr in Taylor series in 
powers of E and put E = ES. By equating the coefficients accompanying e-l and e0 to zero, 
we find that he0 = 0 and, in the case of h,m and hCe, we derive a boundary-value problem 
taking the coordinate rp as the length of an arc along the free boundary 
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ahw _ 
as’ - - T (cp), &a = 0 (s = 0) 

h,, = O(s = co); HE, = hi2 + vgn Ir, I/ = c/U 

The vector-function h, satisfies a linear boundary-value problem which is not given 
here. 

We note that the boundary-value (2.1) when v= 0 has been formulated /l, 2/ in the 
case of Marangoni boundary layers in the investigation of the thermocapillary effect close 
to a free boundary. The conditions for the solvability of (2.1) in a finite interval when 
the velocity profile in the initial cross-section in I?+ is specified have been found in /3/. 

Let us now carry out the selfsimilar solution of problem (2.1) when T = z/l/G. We note 
that, when V = 0, the selfsimilar solutions have been found in /I, 21 in the neighbourhood 
of the critical point. 

We introduce the stream function Ip by the relationships h, = 8$/&, Hta = -a$/+ and 

put $ = J&&F (II), where n = st-'1*/l/i. We obtain a boundary-value problem for the function 

F (n) (it is not necessary to specify the initial profile since it is determined by the 
selfsimilarity condition). 

2F"' + FF" - BnF" = 0, fi = V*-V. (2.2) 

F" (0) = -1, F (0) = F’ (co) = 0 

The solution of problem (2.2) is constructed numerically using the Runge-Kutta method 
for different fl< 0. A plot of the function F’(0) (the velocity of the fluid on the free 
boundary) is shown by the solid line in Fig.1, while a plot of F(m) as a function of the 
parameter IBI is shown by the broken line. As IBI increases, the magnitude of F' (0) 
decays monotonically from a value of 1.7188 when fl = 0 to zero when 18 l-+00. when 
the asymptotic forms of problem (2.2) have the form F'(n) = merfc('/,q v/I p I). 

IBIZSC 
We note 

that, for all 1s I>,iO, the asymptotic values of F’(0) differ from the numerical values 
by less than 2%. In the case of a fixed 8 and increasing n, the function F'(q) decays 
monotonically and F(q) increases monotonically and tends to a finite limit. When 3 = -1, 
we present the numerical values F’(O)-=I.3115 and F(m)= 1.1410. The thickness of the boundary- 
layer decreases monotonically as ) 6 1 increases. 

When 3 >0, the selfsimilar solution is constructed 
2, 

I 
in the form 9 = I/&'~Gr with the condition at infinity 
F,’ (oo) = 0. The function F,(n) is obtained using the 
formula F, = F + aq, where a> 6 and F(q) satisfies 
problem (2.2) in which 8 has to be replaced by -1 /3 I. 

Let us now determine the leading term in the asymp- 
totic expansion (1.3) for a pressure in the boundary-layer 
40. By applying a second iterative process /9/ to system 
(l.l), 

l+-_ 
constructed on the normal to the free boundary, we 

---_____ derive an equation for Q,, from which it follows that 

a .5 10 -) 

Fig.1 q. =lcfh&ds 
I 

(2.31 

Let us now find the value of Q,, on the free boundary. 
in (2.1) with respect to .S on the semi-axis 

By integrating the first equation 
IO, m), using integration by parts and integrating 

the resulting expression with respect to cp, we derive the relationship 

(2.4) 

Here, 
By putting 

f. = &(s,qpo) is the velocity profile in the boundary-layer in the section CP = vO_ 
s=o in (2.3) and taking account of 12.41, we will find the value of 

free boundary 
go on the 
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(2.5) 

We note that, when V = 0, the value of PO r can be determined without the solution 
of the boundary layer problem (2.1) if the velocity profile in the boundary layer is known in 
a certain cross-section cp = 'pO (in the neighbourhood of the critical point, for example, 
/7/j. 

The functions v1, PO and E. which determine the non-viscous flow outside of the 
boundary layer and the asymptotic form of the free boundary are obtained by application of 
the first iterative process /9/ to system (1.1). 

We denote by I',,, thefree boundary z = 5, of the non-viscous flow. Close to the surface 
rO, we introduce the local orthogonal coordinates &, 'pl, where & is the distance to the 
boundary rO. We represent the curvature of the curve r in the form k = k, + e”*k, + . . ., 
where k, is the curvature of the curve rO. Upon substituting the expansions (1.2) into 
system (l.l), allowing for the fact that h, = h, = w1 = q. = q1 = 0 outside of the boundary- 
layer and equating the coefficients of &' and E to zero, we obtain a boundary-value problem 
for "1, PO and 5, which we present in the dimensional form 

(2.6) 

Here, account has been taken of the fact that h,, = 0 and that n, is the normal to 
the solid boundary S. 

Hence, the action of tangential stresses on the free boundary of a low viscosity fluid 
leads to the appearance, in the dynamic boundary condition on the free boundary of the flow 
of an ideal fluid (2.6), of additional terms which depend on the curvature of the boundary, 
the velocity field in the boundary layer and the tangential load. 

The vector-function w1 determines the velocity field in the boundary layer close to 
the solid wall S and compensates for the discrepancy which arises in complying with the 
sticking condition on S with the vector vr. The boundary-value problem for wl,rl. is not 
given since these functions make a contribution to the elevation of the freeboundary in the 
higher approximations starting from the second. 

3. Let us now consider the problem of the effect of surface tangential stresses on the 
long waves which are propagating at a velocity c in a layer of thickness H. By assuming 
that the flow of an ideal fluid, which satisfies (2.6) is vortex-free, we define the velocity 
potential Q, by the relationship v1 = VD. 

The parameter 6 = HIL is introduced, where L is the characteristic horizontal scale of 
the flow (the wave length, for example). Then, S<l in the case of long waves. The 
condition for the thickness of the boundary layer to be small compared with the dimensionless 
thickness of the layer ,6 leads to the relationship ~v~LH-~T,-~<~. In system (2.61, we 
change to the dimensionless variables t’ = &I/glH, z’ = z/H, x’ = ax/H, @,’ = hHI/z@ and 
introduce the moving coordinate x1 =x' - t’, z1 = z’ and the slow time t, = Pt’. The tangen- 
tial stress is represented in the form T = 6T,. 

The equations of the long waves are obtained using the method in /lo/ which is based on 
an expansion of the solution in series in powers of a small parameter 

@ = @'o + @CD,, + . . ., 50 = 1 + PEo* + . . . 

The function n = Eo1* which determines the main correction to the elevation of the free 
boundary, satisfies the non-linear equation 

Here, o. = UT,-‘L-’ is the dimensionless surface tension and fo (4 is the longitudinal 
component of the velocity in the boundary layer in the section x1 = 0. Eq.(3.1) generalizes 
the Korteweg-de Vries equation in the theory of long non-linear waves /lo/ to the case of the 
action of surface tangential stresses. 
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We now represent the velocity of propagation of the waves in the form of a series:c/l/z= 
1+6*c,+ . . . . We note that, when T, = 0, solitary waves are contained among the solutions 
of Eqs.(3.1), which move at a supercritical velocity when c1 >0, and periodic waves in the 
case when c,<O/lO/. 

Let us now determine the solutions of the travelling wave type U(I - c,t) in the case 
of the asymmetric tangential load T, = 2% exp i-(6 - 1)21/3 where 6 = zI - c,t in the case when 
v< 1. It can be shown that f. = &o(e=a = 0 in Eq.(3.1). In order to do this close to 
8 = 0, by approximating the load by a linear function we find the solution of the boundary 
layer Eqs.(l.l), where h, = aa6exp (-us), a = 12h exp (-1)/3V. 

Now, by neglecting the surface tension in (3.1) and putting V = 0, we derive the 
equation 

(I-3ST,dB)uX+4,5ua-6c,lr=o (3.2) 

The free boundary which is obtained as the result of the numerical solution of Eq.(3.2) 
for various values of the amplitude of h when c1 = 0.5 is shown in Fig.2. When h = 0, 
Eq.(3.2) describe a soliton (curve I) /lo/. For values of h in the interval O,<h<h,= 
0.2751, the "peak" of the soliton is displaced to the left. When h, < h< h, = 3,624, waves 
appear from the right-hand side of the peak, the amplitudes of which increase as I increases 
(the typical form of a wave is shown in curve 2). When h=h,, a wave of the "hump" type 
is obtained (curve 3) for which U-+0 and e-+--m and U--f Vs when e+m. No bounded 
numerical solutions are found for values of h>h". The results of numerical calculations 
of the form of the wave which travels with a subcritical velocity when c1 = -0.5 and h = 0.25 
are shown in Fig.3. The tangential load leads to a decrease in the amplitude of the wave and 
its length. This effect is less significant, the greater the amplitude of the load. 

Numerical calculations were also carried out into the action of a symmetric tangential 
load T1= */,hexp(AP) on the free boundary for cl= 0.5. In this case, when Ogh-<l, a family 
of solitons is obtained for which the height of the hump increases as I increases and attains 
a value of 1.184 when L= i. In the interval IgL\ih,= 1.667, waves appear on both sides of 
the hump while the lengths and amplitudes of the waves increase as h becomes larger. When 
h= h,, the solution is a soliton for which u(O)= 1.50 and I= ai,. There were no 
numerical solutions for ?"h>h,. Typical plots of a wave form are depicted in Fig.4. Curves 
l-4 correspond to values of I equal to 0, 1, 1.2 and h,. 

Solutions of the travelling-wave type were studied numerically in the case of Eq.(3.1) 
when V= -i and T,=1fiB>O), T,=O@<O). In this case, the velocity in the boundary layer, 
hW, = 0 (e< o), he, = ~1 (n) (e >o), where the function F (tl) is determined from the boundary- 
value problem (2.2). Solitary waves are obtained when ?.)o for which the hump is displaced 
to the right from the line e=o and the height of the hump is only slightly greater than 
unity. 

Fig.2 
Fig.3 

Fig.4 
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4. Let us investigate the effect of tangential stresses an the propagation of small 
amplitude progressive capillary-gravitational waves. We assume that a system of tangential 
stresses T(z - ct} shifts over a flow surface which is moving at a velocity W. By assuming 
that the flow of a non-viscous flow is slow and potential, by linearizing system $2.6) we 
obtain a boundary-value problem in the stream function $(cp,z) (cp = .z -ct) which determines 
the travelling waves 

A+ = 0 

(C-w)~~-g$=-p-lf(cp)~ @=O) 

(4.1) 

a+&# = 0 (z = -H) 

f!F1~o+~Tdri+c~h~~s+~f,(j,-c~ds 
0 0 

Let us suppose that the tangential stresses are specified locally by means of a delta- 
function T = 76 (cp), where z>O and the characteristic velocity in the boundary layer is 
substantially greater than the velocity c(U>c). Then, apart from small high-order quantities 

The solution 

where i = 1 when 
persion equation 

f (cp) = CJ + t ((P > 0). f (4 = 0 f’P < 0) 
of problem (4.1) is obtained in the form 

qr = Aj sh 52; (Z -I_ H)sin B,rp 

cp>O and i=2 when cp< 0. The wavenumber tit satisfies the dis- 

F,(S&)r (z i_ ~)&~th P,H - pf2, (m - c)~ + pgth B,H = 0 

The parameter !& is the solution of this equation when z = 0. An investigation of the 
roots of the dispersion equation shows that, when (w - c)~< gH, two solutions exist which 
correspond to gravitational and capillary waves. These solutions are bounded when r < r* 
and become unbounded when z > 7*. The value of ?* was determined numerically from the 
equation which is obtained when 
that Z* = 0 when 

Q, is eliminated from the system F, = 0, dF,l~X2, = 0. We note 
w=C and, as the parameter 

Qincreases monotonically and, 
P = (W-c)*ll(gH) becomes larger, the value of 

when V = 1, it reaches a maximum value equal to rm = ~f3pgHy--oo. 
Analysis of the amplitudes Ai (r, c, g, iu -c, If) shows that the tangential stresses 

suppress gravitational waves and reinforce capillary waves. When (w - @r=,gr, z<k. only 
capillary waves exist and the amplitudes of these become unbounded when .A m. If, however, 
(w - cY> gH, then, for any 7>0# there exist only capillary waves and the amplitudes 
and wavelengths of these waves increase as r,becomes larger. 

In the case of a layer of infinite depth, gravitational and capillary waves only exist 
when T < T@ = -o -+ r/&p (W - c)* g-r. The waves decay (their amplitudes become unbounded as 
'p-+mJ when the tangential load attains the critical value Q. 

Let tangential stresses of the form T = hf(q) (cP>Of, T=O (cp<% where f(q) is a 
function which is integrable on the half-axis, be specified on the free boundary. It can be 
shown that the critical value of the tangential load at which the amplitudes of the waves 
become unbounded does not exceed the value 

of 

1. 

2. 

3. 

4. 

As in a layer of finite depth, the action of the tangential stresses leads to the decay 
the graviational waves and to reinforcement of the capillary waves. 
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THE GENERALIZED PROBLEM OF BREAKUP OF AN ARBITRARY DISCONTINUITY* 

I.S. MEN'SHOV 

The problem of breakup of an arbitrary discontinuity in a gas (the 
Riemann problem) is generalized to the case when an arbitrary, in 
general space-variable, distribution of the gas-dynamic parameters is 
given on both sides of the discontinuity at the initial instant of time 
(the generalized Riemann problem /l/l. The solvability of this, in 
general non-selfsimilar, model is proved and analytical formulas are 
found for its solution in a small neighbourhood of the points of 
discontinuity in the I, t plane, where x is the space coordinate and t 
is the time. 

A complete analysis of the selfsimilar Riemann problem was 
developed by Kochin /2/. The generalized Riemann problem is in general 
non-selfsimilar and does not admit of a simple analytical solution over 
the entire I, t plane. However, some analytical solutions may be 
obtained for this problem. Thus, for a linear initial distribution, 
analytical formulas were obtained in /l/ for the values of the 
derivatives of the gas-dynamic parameters along the contact 
discontinuity for t= 0. 

Below, the generalized Riemann problem is considered in a small neighbourhood of the 
point of discontinuity in the (x,1) plane and its analytical solution is constructed to a 
first approximation in 8= l/zP+tL. Analytical formulas for the trajectories of discontinuities 
are obtained in the same approximation. 

1. The generalized Riemann problem is reducible to the following Cauchy problem for one- 
dimensional non-stationary equations of gas d,ynamics: 

(wh + kw + F), = 0 (1.1) 

‘p = (1, u, e + V&)T, 

F = (0. PI P#‘, P’P CO,4 = Qz (x1, 5 > o 
i 

cp,cG s<o 

where u, p and e are the velocity, density, 
is the pressure and % (5) and cpz (a) 

and the specific internal energy, P =p(p, e) 
are functions which are differentiable in the domain 

of definition, which specify the initial parameter distribution. 
We will rewrite the system of Eqs.(l.l) in characteristic form, introducing the specific 
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